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By studying a nonequilibrium Langevin system, we find that a simple condition determines the decompo-
sition of the coarse-grained force into a dissipative force, an effective driving force and noise. From this
condition, we derive a universal inequality,Dùgmd

2T, relating the diffusion constantD, the differential mo-
bility md, the bare friction constantg and the temperatureT. Due to the general nature of the argument we
present, we believe that our idea concerning this decomposition can be applied to a wide class of systems far
from equilibrium.
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The nature of a force depends on the scale on which it is
observed. For example, consider a force exerted by water
molecules on a colloidal particle. Such a force can be de-
scribed by mechanical laws on molecular time scales, while
it is described as a dissipativesfrictionald force and thermal
noise on time scales of the order of 10−3 s. In an analogy to
this example, for a wide range of systems, including biome-
chanical systemsf1g and granular systemsf2g, it might be
expected that a fluctuating force obtained through some
coarse-graining procedure can be decomposed into a dissipa-
tive force and other components. In the regime near equilib-
rium, such a decomposition is uniquely determined by
fluctuation-dissipation relationssFDRsd. However, no rule is
known that determines such a decomposition far from equi-
librium f3g. We wish to discover a rule of this kind for a class
of systems exhibiting fluctuating forces.

With the above-stated purpose, in the present paper, we
study a Langevin equation describing the motion of a
Brownian particle with a tilted periodic potential in a one-
dimensional space. Although we study the simplest system
realizing nonequilibrium steady statessNESSsd, the argu-
ments below can be applied to a wide class of Brownian
motorsf4–6g. The Langevin equation that we analyze is de-
scribed by

g
dx

dt
= f −

dUsxd
dx

+ jstd. s1d

Here,g is a friction constant,Usxd is a periodic potential of
period ,, f is a constant external driving force, andj is
Gaussian white noise satisfying

kjstdjst8dl = 2gTdst − t8d, s2d

whereT is the temperature of the environment, and the Bolt-
zmann constant is set to unity. We consider a description of
large-scale motion, which is obtained by taking an average
over a time intervaldt that is chosen to be sufficiently longer
than the characteristic time of the system. In this description,
the finite time average of the force −dU/dx acts on the par-
ticle as a fluctuating force. We conjecture that this fluctuating
force can be decomposed into a dissipative force, an extra
driving force, and random noise.

In order to investigate time-averaged quantities, including
that of −dU/dx, we introduce the finite time average of an
arbitrary quantityZstd

Zn ;
1

dt
E

tn

tn+1

dtZstd, s3d

wheretn=ndt, n=0,1,2,…. Then, the finite time average of
−dU/dx that we consider is given by

−
dU

dxn
= −

1

dt
E

tn

tn+1

dtUdU

dx
U

x=xstd
. s4d

We hypothesize that this can be decomposed into a dissipa-
tive componentAsxn+1−xnd /dt, wherexn;xstnd, and a non-
dissipative component. That is, we assume the form

−
dU

dxn
= A

xn+1 − xn

dt
+ Bn, s5d

whereA is a constant andBn is a fluctuating quantity whose
statistical averagekBnl takes a nonzero valuef p

Bn = f p + dBn. s6d

The quantitiesf p and dBn correspond to an extra driving
force and random noise, respectively. Substitutings5d into an
integrated form ofs1d, we obtain

sg − Ad
xn+1 − xn

dt
= f + f p + dBn + jn. s7d

Then, with the definitions

G ; g − A, s8d

F ; f + f p, s9d

Jn ; dBn + jn, s10d

we expresss7d as
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G
xn+1 − xn

dt
= F + Jn, s11d

whereJn is expected to exhibit a Gaussian distribution for
large dt. This equation is regarded as an effective model of
s1d.

The main claim of this Rapid Communication is that the
simple condition

lim
dt→`

dtkdBnjnl = 0 s12d

uniquely determines the constantA in s5d. Note that a corre-
lation of time-averaged quantities is proportional todt−1 in
general ands12d indicates that the proportional constant for
the casekdBnjnl becomes zero. The conditions12d implies
that Asxn+1−xnd /dt, which fluctuates in time, can be distin-
guished fromBn by the conditions12d f7g. After presenting
the proof of this claim, we remark on three important topics
related to it: a general inequality obtained as a direct appli-
cation of s12d, energetic considerations related tos12d, and
the relation betweens12d and a time-reversal symmetry in
the stochastic sense.

Preliminary consideration. Before presenting the proof of
the main claim, we first consider how the parameters of the
effective models11d can be expressed in terms of the steady
state velocityvs and the diffusion constantD, defined asvs
; limt→`ksxstd−xs0dd / tl and D; limt→`ksxstd−xs0d
−vstd2/2tl. Becausevs andD are independent of the scale on
which we describe the system, the same values ofvs andD
should be obtained froms11d. This implies the relationsF
=Gvs and

kJnJml = 2dnmDG2sdtd−1. s13d

From these expressions, all the parameters of the effective
model s11d are given in terms ofvs andD whenG is deter-
mined.

In the equilibrium casesf =0d, G should satisfy the rela-
tion DG2=GT, which is referred to as the FDR of the second
kind f8g. From this,G is expressed as

G =
T

D
. s14d

Furthermore, we can prove

D = mT, s15d

wherem is the mobility, defined asm=lim f→0 vssfd / f. The
two FDRss14d and s15d lead to

G = m−1. s16d

However, for NESSs far from equilibrium,s15d is violated
f9g, and s14d does not hold in general. Therefore, for treat-
ment of such systems, it is necessary to find a guiding prin-
ciple to determineG.

In a previous workf9g, we studied NESSs and proposed a
natural method to determineG by considering the response
of the particle to a slowly varying potentialVsxd in space.
Below, we present a heuristic argument from which the result
obtained there can be understood. For detailed presentation

of the systematic perturbation method used to derive this
result, see Ref.f9g.

Because the gradient of the slowly varying potentialVsxd
can be regarded as a modulation of the external forcef, the
large-scale motion in the modulated system is described by

xn+1 − xn

dt
. vsS f −

dVsxnd
dxn

D +
Jn

G
. vssfd − md

dV

dxn
+

Jn

G
,

s17d

wheremd is the differential mobility defined by

md ;
dvssfd

df
. s18d

Then, assuming that −dV/dxn is the force acting on the par-
ticle even in this effective description, froms17d we obtain
the result

G = md
−1. s19d

Note that this expression represents an extension ofs16d to
the presently considered nonequilibrium case. Froms8d and
s19d, we find that the constantA appearing ins5d should
satisfy

g − A = md
−1. s20d

Proof. We demonstrate that the decomposition condition
s12d uniquely determines the constantA, yielding s20d. Using
s5d and s7d, we rewrite the conditions12d as

lim
dt→`

dtKS dU

dxn
+ A

xn+1 − xn

dt
DSg

xn+1 − xn

dt
+

dU

dxn
DL

c
= 0,

s21d

wherek lc represents the cumulant. Through the definition

G ; − lim
dt→`

dtK dU

dxn

xn+1 − xn

dt
L

c
, s22d

it is easy to obtain

g − A =
2gT

2gD − G
. s23d

In order to connects23d with the differential mobilitymd
defined bys18d, we express it in terms ofD andvs. We start
with the path integral representation

kxsdtd − xs0dl =E Dxfxsdtd − xs0dg

3e−s1/4gTde−`
dt dt(gẋ − f + sdU/dxd)2. s24d

Then, differentiating both sides with respect tof, we derive

d

df
kxsdtd − xs0dl =

D

T
dt −

G

2gT
dt + Osdt2d s25d

for largedt. This leads to the relation

md =
2gD − G

2gT
. s26d

Comparings23d and s26d, we have arrived ats20d.
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Inequalities. As a simple application of the decomposition
condition s12d, we derive several useful inequalities. From
the square of both sides ofs10d and the conditions12d, we
obtain

2G2D = dtksdBnd2l + 2gT, s27d

where we have useds13d. This immediately leads to an in-
equality relating the intensity of the force noise in the origi-
nal system and the quantity representing its effective value in
the coarse-grained system

G2D ù gT. s28d

BecauseG=md
−1 fsees19dg, s28d can be written as

D ù gmd
2T. s29d

We believe that this inequality holds in other Brownian mo-
tors f4–6g because the path integral expression is valid even
for cases with a time-dependent potential and the expressions
s21d–s26d given in the proof are the same for those models.
The inequalitys29d involves only directly measurable quan-
tities and therefore can be tested experimentally.

In a related work, Sasaki conjectured that the inequality
DùmdT holds generally for Brownian motorsf10g. If we
define the effective temperatureTeff using the FDR violation
factor f9g, this conjecture is equivalent to the assertion that
Teff is not less than the temperature of the environment,T.
Because it has been observed thatTeff.T in glassy systems
f11g and driven many-body systemsf12,13g, the inequality
DùmdT does seem plausible. However, Sasaki reported that
this inequality is violated for the models1d with an appro-
priate choice ofUsxd f14g. This result leads us to believe
that, in the present context, if there exists a generally valid
inequality among measurable quantities, perhaps it involves
the intensity of the force noise and its effective one, not the
temperature and its effective one.

Energetics. In equilibrium systems, heat is distinguished
from work according to the second law of thermodynamics.
However, obviously, heat can be considered as a mechanical
work done by a force at a microscopic scale. This tempts us
to investigate how heat and work come to be expressed in
different ways through a coarse-graining procedure. We treat
this problem on the basis of the decomposition of the force
−dU/dxn given by s5d.

In Langevin systems, the heat absorbed from a heat bath
is interpreted as the work done by a force −gdx/dt+j ex-
erted by the heat bathf15g. With this interpretation, the heat
absorbed during an intervaltnø tø tn+1 can be expressed as

qn = −E
tn

tn+1 Sg
dx

dt
− jD + dxstd, s30d

where the symbol+ indicates that the integral here is the
stochastic Stieltjes integral in the Stratonovich sensef15g.
Then, the energy balance equation for the models1d is de-
rived as

Usxn+1d − Usxnd = qn + fsxn+1 − xnd. s31d

Through similar considerations applied to the effective
model s11d, we define the heatsabsorbed from an effective
heat bathd as

Qn = − SG
xn+1 − xn

dt
− JDsxn+1 − xnd. s32d

With this, the energy balance equation fors11d is obtained as

Qn + Fsxn+1 − xnd = 0. s33d

The difference between the two quantitiesqn and Qn be-
comes obvious when their steady state averages are com-
pared; we havekqnl=−fvsdt and kQnl=−Fvsdt, while it is
known that outside the linear response regime, in generalF
Þ f ssee Fig. 2 of Ref.f9gd.

In order to understand the difference betweenqn andQn,
we consider a decomposition of the work done by the force
−dU/dx during a time intervaltnø tø tn+1, which is written
as

−
dU

dx

dx

dtn
dt = Qn

p + Wn
p. s34d

Although we conjecture thatQn
p andWn

p correspond to “heat”
and “work,” respectively, no rule is known that distinguishes
heat from work in this case. However, in the present system,
it seems natural to assume

Wn
p = f psxn+1 − xnd, s35d

because the extra driving forcef p was determined from the
decomposition conditions12d. With this assumption, we can
derive the relation

Qn = qn + Qn
p, s36d

which provides a clear interpretation of the difference be-
tweenqn andQn.

The argument above leads to the following question: is
there a simple rule of energetics from which we can obtain
the decompositions34d along with s35d without the decom-
position conditions12d? This question will be studied in the
future. In addition to their role in such fundamental prob-
lems, energetic considerations applied to different time
scales may be useful when we attempt to interpret the effi-
ciency of motor proteinsf16g within stochastic modelsf17g.

Adjoint dynamics. As a final topic here, we consider the
relation between the decomposition conditions12d and time-
reversal symmetry. In order to represent this symmetry ex-
plicitly, we consider the path probability densityP for a dis-
crete time seriesfxgN=sx0,x1,… ,xNd generated within the
model under consideration. The time-reversed path probabil-
ity density P* is defined byP*sfxgNd=Psfx̃gNd, where fx̃gN

represents the time reversed trajectory offxgN, that is, x̃n

=xN−n. WhenP* is obtained from the frequency distribution
of trajectories in a steady state for some stochastic dynamics,
these dynamics are called adjoint dynamics.

When the constantA appearing ins5d is chosen correctly,
s7d can be regarded as an effective Langevin model. In this
case, we find that adjoint dynamics are described by
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sg − Ad
xn+1 − xn

dt
= − f − f p + dBn + jn. s37d

Then, note that the conditions12d is equivalent to

ks− dBn + jnd2l = ksdBn + jnd2l. s38d

Because bothdBn and jn exhibit Gaussian distributions for
sufficiently largedt, the conditions38d allows us to replace
dBn+jn in s37d by −dBn+jn. Thus, the adjoint dynamics can
be expressed as

sg − Ad
xn+1 − xn

dt
= − f − Bn + jn. s39d

Then, becauses7d can be rewritten as

sg − Ad
xn+1 − xn

dt
= f + Bn + jn, s40d

we find that the decomposition of −dU/dxn given by s5d is
characterized by parity with respect to time reversal in the
stochastic sense. More specifically, the dissipative force
Asxn+1−xnd /dt remains, while the other contribution,Bn,
changes sign in the adjoint dynamics.

In a previous study related to adjoint dynamics, Bertiniet
al. succeeded in deriving the large deviation functionalS of
the density profile for a special model of the hydrodynamic
equation]tr=Dsrd, which is obtained as the continuum limit
for a nonequilibrium lattice gasf18g. In their analysis, the

equation describing the adjoint dynamics]tr=D*srd was rig-
orously derived in the form

D*srd =
1

2
¹ Sxsrd ¹

dS

dr
D − Asrd s41d

for the case in whichDsrd is given by

Dsrd =
1

2
¹ Sxsrd ¹

dS

dr
D + Asrd, s42d

where xsrd is the current noise intensity. They called the
relation Dsrd+D*srd= ¹ sxsrd¹ sdS/drdd the fluctuation-
dissipation relationship for NESSs far from equilibrium, be-
cause it reduces to one expression among the linear response
relations for states near equilibrium, where the relation
Dsrd=D*srd holds due to detailed balance. We remark that
s41d and s42d are similar tos39d and s40d in the model we
study.

Conclusion. We have found that the decomposition con-
dition s12d leads to the relationG=md

−1, which was obtained
in our previous studyf9g. The conditions12d, which is re-
lated to time-reversal symmetry, yields the new inequality
s29d and leads to an interesting question regarding the de-
composition of work given ins34d.
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