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Decomposition of force fluctuations far from equilibrium
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By studying a nonequilibrium Langevin system, we find that a simple condition determines the decompo-
sition of the coarse-grained force into a dissipative force, an effective driving force and noise. From this
condition, we derive a universal inequalify,= y,uﬁT, relating the diffusion constari?, the differential mo-
bility wq, the bare friction constang and the temperatur€. Due to the general nature of the argument we
present, we believe that our idea concerning this decomposition can be applied to a wide class of systems far
from equilibrium.
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The nature of a force depends on the scale on which it is In order to investigate time-averaged quantities, including
observed. For example, consider a force exerted by watdhat of -dU/dx, we introduce the finite time average of an
molecules on a colloidal particle. Such a force can be dearbitrary quantityZ(t)
scribed by mechanical laws on molecular time scales, while

it is described as a dissipatiy&ictional) force and thermal = 1 the1
noise on time scales of the order of $®. In an analogy to Zy= o dtZ(t), (3
this example, for a wide range of systems, including biome- n

chanical system§l] and granular systemi2], it might be  \yheret =nat, n=0,1,2,... Then, the finite time average of
expected that a fluctuating force obtained through someqj;qx that we consider is given by

coarse-graining procedure can be decomposed into a dissipa-

tive force and other components. In the regime near equilib- dqu 1 (1 du
rium, such a decomposition is uniquely determined by —d—:——f dt dx . (4)
fluctuation-dissipation relation&DRs. However, no rule is % oy, X1 xex()

known that determines such a decomposition far from equi- . . . L
librium [3]. We wish to discover a rule of this kind for a class W& hypothesize that this can be decomposed into a dissipa-

of systems exhibiting fluctuating forces. tive component(Xy.,—Xy)/ &, wherex, =x(t,), and a non-

With the above-stated purpose, in the present paper, w@iSsipative component. That is, we assume the form

study a Langevin equation describing the motion of a S
Brownian particle with a tilted periodic potential in a one- _ du - AXn+1‘Xn +B (5)
dimensional space. Although we study the simplest system dx, ot m
realizing nonequilibrium steady staté’lESSS, the argu-
ments below can be applied to a wide class of BrowniarwhereA is a constant an8,, is a fluctuating quantity whose
motors[4—6]. The Langevin equation that we analyze is de-statistical averagéB,,) takes a nonzero valug’
scribed by
B,=fP+ 6B,. (6)
dx dU(x)
?’a =f- T dx +&(1). @ The quantitiesf? and 6B, correspond to an extra driving
force and random noise, respectively. SubstitufB)gnto an

Here, y is a friction constantJ(x) is a periodic potential of integrated form of(1), we obtain
period ¢, f is a constant external driving force, ardis

Gaussian white noise satisfying (y_A)Xml‘Xn = f+1P+ OB, + &, 7)
(EMET)) =2yTot-t"), (2 _ L
Then, with the definitions
whereT is the temperature of the environment, and the Bolt-
zmann constant is set to unity. We consider a description of I'=y-A, (8)

large-scale motion, which is obtained by taking an average
over a time intervabt that is chosen to be sufficiently longer

than the characteristic time of the system. In this description, F=f+ff, ©)
the finite time average of the forceld/dx acts on the par-

ticle as a fluctuating force. We conjecture that this fluctuating E,= B, +&, (10
force can be decomposed into a dissipative force, an extra

driving force, and random noise. we express7) as
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Xne1 = Xn _ of the systematic perturbation method used to derive this
=5 ~F+&n (1) result, see Ref9].

Because the gradient of the slowly varying potentiéf)
whereE,, is expected to exhibit a Gaussian distribution for can be regarded as a modulation of the external for¢ee
large dt. This equation is regarded as an effective model ofarge-scale motion in the modulated system is described by

).

The main claim of this Rapid Communication is that the Xnt1=*n _ <f _ M) + 2N (- av  En
simple condition St S dx, r -c dax, I’
lim SKoB.E) =0 (12) 17)
A where ugq is the differential mobility defined by
uniquely determines the constahin (5). Note that a corre- du(f)
lation of time-averaged quantities is proportionaldo? in Uy = — (18)

general and12) indicates that the proportional constant for df
the case(6B,¢,) becomes zero. The conditidd2) implies  Then, assuming thatdV/dx, is the force acting on the par-
that A(Xn+1—Xp)/ 8t, which fluctuates in time, can be distin- ticle even in this effective description, frofl7) we obtain
guished fromB,, by the condition(12) [7]. After presenting the result
the proof of this claim, we remark on three important topics =yt 19
related to it: a general inequality obtained as a direct appli- ~Hd - (19)
cation of (12), energetic considerations related(i®), and  Note that this expression represents an extensiofl&fto
the relation betweeitl2) and a time-reversal symmetry in the presently considered nonequilibrium case. F(6and
the stochastic sense. (19), we find that the constamd appearing in(5) should
Preliminary considerationBefore presenting the proof of satisfy
the main claim, we first consider how the parameters of the )
effective model(11) can be expressed in terms of the steady Y=AZ Ly (20
state velocityvs and the diffusion constar?, defined asg Proof. We demonstrate that the decomposition condition
=lim_((x()-x(0))/t) and  D=Ilim_.{((x(t)=x(0)  (12) uniquely determines the constaityielding (20). Using
-vd)?/2t). Becauses andD are independent of the scale on (5) and(7), we rewrite the conditiorf12) as

which we describe the system, the same values,@nd D AU xer—x % —x. duU
should be obtained fromil1). This implies the relation§ lim &t (—+A ntl ”)( ntl  on +—> =0,
=Tvs and e dx, ot ot %/ /¢
(EnEm = 28,,DT2(8) 7 (13) (21)
From these expressions, all the parameters of the effectivvt\e/here< )c represents the cumulant. Through the definition
model(11) are given in terms obs andD when[ is deter- _ dU X1 = X,
mined. =- ;t'm ot &n S : (22)
In the equilibrium caséf=0), I should satisfy the rela- - ¢
tion DI'2=T'T, which is referred to as the FDR of the secondit iS easy to obtain
kind [8]. From this,I" is expressed as 24T
Y
T y—A=2 D_G’ (23
r=—. (14) 7
D In order to connect23) with the differential mobility uqy
Furthermore, we can prove defined by(18), we express it in terms dd andvs. We start
with the path integral representation

D=uT, (15
where u is the mobility, defined ag.=lim;_qvy(f)/f. The (x(8t) = x(0)) = J DxX[x(ét) = x(0)]
two FDRs(14) and(15) lead to o ,

r= Iu—l_ (16) Xe—(1/4yT)f_mdt(yx— f + (dU/dx)) ] (24)

However, for NESSs far from equilibriuni15) is violated Then, differentiating both sides with respectftove derive

[9], and (14) does not hold in general. Therefore, for treat-
ment of such systems, it is necessary to find a guiding prin-
ciple to determind. _ )
In a previous work9], we studied NESSs and proposed afor large ét. This leads to the relation
natural method to determirié by considering the response 2D -G
of the particle to a slowly varying potentiad(x) in space. HMd = o
Below, we present a heuristic argument from which the result Y
obtained there can be understood. For detailed presentatic@@omparing(23) and (26), we have arrived at20).

9 s -xon = 2a- S 2
df<X(5t) x(0)) = 1 ot zchSt +0(at) (25
(26)
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Ingqualities As a simple application of t_he decqmposition U(Xne1) = U(Xy) = 0+ F(Xreg = %) (31
condition (12), we derive several useful inequalities. From o ) ) ) )
the square of both sides ¢£0) and the conditior(12), we Through similar considerations applied to the effective

obtain model (11), we define the hedabsorbed from an effective
heat bath as
2I°D = &((8B,)?) + 29T, (27) Xor1 = Xn
! Qn=- F%—:)(xm—xn). (32)

where we have used3). This immediately leads to an in- _ _ _ _
equality relating the intensity of the force noise in the origi- With this, the energy balance equation faf) is obtained as
nal system and the quantity representing its effective value in

the coarse-grained system Qn+ FOw1=%) =0. (33)
The difference between the two quantitigs and Q,, be-
I'?D = 4T. (28)  comes obvious when their steady state averages are com-
pared; we haveq,)=-fvsst and(Q,)=—Fuvsd&, while it is
Becausd = u " [see(19)], (28) can be written as known that outside the linear response regime, in gerteral
#f (see Fig. 2 of Ref{9]).
D = yulT. (29) In order to understand the difference betwegrand Q,,

we consider a decomposition of the work done by the force
We believe that this inequality holds in other Brownian mo-~dU/dx during a time intervat, <t<t,,, which is written
tors[4—6] because the path integral expression is valid eve®S
for cases with a time-dependent potential and the expressions dU dx
(21)—(26) given in the proof are the same for those models. - ——a=Q°+We, (34)
The inequality(29) involves only directly measurable quan- dx dt,

tities and therefore can be tgsteq experimentally. . _ Although we conjecture th&d® andWP correspond to “heat”
In a related work, Sasaki conjectured that the inequality, “work,” respectively, no rule is known that distinguishes

D= pgT holds g_enerally for Browni_am motorfsLO]. _If W€ " heat from work in this case. However, in the present system,
define the effective temperatufgy using the FDR violation it caems natural to assume

factor[9], this conjecture is equivalent to the assertion that
T. is not less than the temperature of the environmént, W = £P(Xn1 = Xn), (39
Because it has been observed thgt>T in glassy systems
[11] and driven many-body systemi$2,13, the inequality
D= u4T does seem plausible. However, Sasaki reported th
this inequality is violated for the modéll) with an appro-
priate choice ofU(x) [14]. This result leads us to believe Qn=0,+Q", (36)
that, in the present context, if there exists a generally valid
inequality among measurable quantities, perhaps it involve

he i ity of the f i its effecti h . o
the intensity of the force noise and its effective one, not the The argument above leads to the following question: is

temperature and its effective one. : ! ! .
P there a simple rule of energetics from which we can obtain

Energetics In equilibrium systems, heat is distinguished L : .
. .~ _the decompositior34) along with (35) without the decom-
from work according to the second law of thermodynamics, psition condition(12)? This question will be studied in the

However, obviously, heat can be considered as a mechanic " . -
work done by a force at a microscopic scale. This tempts u lture. In addlpon to thelr rple n suc_h fundamental prgb—
ms, energetic considerations applied to different time

to investigate how heat and work come to be expressed i : :
different ways through a coarse-graining procedure. We treast.Cales rrflay be useful' when v.vﬁ.attempr)]t to' lnterprelt the effi-
this problem on the basis of the decomposition of the force'€NCy © motor p_rote|n§16_] wit m_stoc astic mode_El?].
—dU/dx, given by (5). A(_:Ijomt dynamicsAs a final topic here,_ we consujer the
trlglatlon between the decomposition conditid?) and time-

In Langevin systems, the heat absorbed from a heat bareversal symmetry. In order to represent this symmetry ex-
is interpreted as the work done by a forcedx/dt+¢ ex- y Y- b y y

erted by the heat bafli5]. With this interpretation, the heat plicitly, we consider the path probability densiyfor a dis-

: ; crete time serie$x]y=(Xg,Xy,...,Xy) generated within the
absorbed during an intervg]<t=<t,,,; can be expressed as ANTAR00 L N .
g 8 il P model under consideration. The time-reversed path probabil-

[ dx ity density P* is _defined byP*([x],\_,)=P([>~<]N), Where_ D?lN
On=- f (7— _g> o dx(t), (30) represents the time reversed trajectory[®fy, that is,X,
t dt =Xn-n- WhenP" is obtained from the frequency distribution
of trajectories in a steady state for some stochastic dynamics,
where the symbob indicates that the integral here is the these dynamics are called adjoint dynamics.

because the extra driving ford® was determined from the
ecomposition conditio12). With this assumption, we can
erive the relation

hich provides a clear interpretation of the difference be-
weeng, andQ,,

stochastic Stieltjes integral in the Stratonovich sefids. When the constarA appearing in5) is chosen correctly,
Then, the energy balance equation for the mddglis de-  (7) can be regarded as an effective Langevin model. In this
rived as case, we find that adjoint dynamics are described by
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Xpr1 = Xn — equation describing the adjoint dynamigs=D"(p) was rig-
(y=A)= St S=-f-fP+ B+ &, (37 orously derived in the form
Then, note that the corldltlo(rlZ) is eqinvalent to D'(p) = > v (X(P) v 5_p> ~ Alp) (41)
<(_ 5Bn + §n)2> = <(§Bn + §n)2>- (38)

Because bothB,, and En exhibit Gaussian distributions for for the case in whiciD(p) is given by

sufficiently largeét, the condition(38) allows us to replace 1 5S
5B, +&,in (37) by -8B, +&,. Thus, the adjoint dynamics can D(p) = > v (X(P) v 5—) +Alp), (42)
be expressed as P

o —x B where x(p) is the current noise intensity. They called the
(y- A)% =—f-B,+&,. (39)  relation D(p)+D"(p)=V(x(p)V(5S/p)) the fluctuation-
dissipation relationship for NESSs far from equilibrium, be-
Then, becausé?) can be rewritten as cause it reduces to one expression among the linear response
relations for states near equilibrium, where the relation
R = D(p)=D"(p) holds due to detailed balance. We remark that
(y=A) st [+Ba+ & (40) (41) and (42) are similar to(39) and (40) in the model we

, . — . study.
we find that the decomposition ofdtl/dx, given by (5) is Conclusion We have found that the decomposition con-

characte_rized by parity with re_s_pect to time_re\_/er;al in thedition (12) leads to the reIatio[F=,ual, which was obtained
stochastic sense. More s_pemﬂcally, the dlss_lpa_tlve forc% our previous study9]. The condition(12), which is re-
AlXn1~%)/ 8t remains, while the other contributio,,  |5teq to time-reversal symmetry, yields the new inequality

changes sign in the adjoint dynamics. _ .. (29 and leads to an interesting question regarding the de-
In a previous study related to adjoint dynamics, Beréini composition of work given ir(34).

al. succeeded in deriving the large deviation functioBaif

the density profile for a special model of the hydrodynamic This work was supported by Grant No. 16540337 from
equationdp=D(p), which is obtained as the continuum limit the Ministry of Education, Science, Sports and Culture of
for a nonequilibrium lattice gagl8]. In their analysis, the Japan.

[1] R. Merkelet al, Nature(London 397, 50 (1999. (1965]. See alsd3].
[2] E. Longhi and N. Easwar and N. Menon, Phys. Rev. L8€, [8] R. Kubo, M. Toda, and N. Hashitsum8tatistical Physics II:
045501(2002. Nonequilibrium Statistical Mechani¢Springer, Berlin, 1991

[3] A projection operator formalism cannot provide such a rule [9] K. Hayashi and S. Sasa, Phys. Rev6E 066119(2004.
without serious considerations of the choice of a suitable pro{10] K. Sasaki, J. Phys. Soc. Jpi2, 2497 (2003.
jection operator. See, e.g., K. Kawasaki, J. Phys6AL289  [11] For a review, see A. Crisanti and F. Ritort, J. Phys3@ R181
(1973. (2003.
(4] M. Suttu_lker, Z. Phys. B: Condens. Matte38, 161 (1987. [12] L. Arrachea and L. F. Cugliandolo, e-print cond-mat/0407427.
[5] A. Ajdari and J. Prost, C. R. Acad. Sci., Ser. Il: Mec., Phys., [13] K. Hayashi and S. Sasa, e-print cond-mat/0404453.
Chim., Sci. Terre Univers815 1635(1992; M. O. Magnasco, [14] K. Sasaki, private communication

Phys. Rev. Lett.71, 1477(1993. [ )
. . . 15] K. Sekimoto, J. Phys. Soc. Jp66, 1234(1997).
[6] R. D. Astumian and M. Bier, Phys. Rev. Lelf2, 1766(1994); [16] M. Nishiyama, H. Higuchi, and T. Yanagida, Nat. Cell Bidl,

J. Prostet al, Phys. Rev. Lett.72, 2652(1994). 790 (2002
7] The condition(12) takes a different form with the orthogonal- ' .
7] (12 ¢ [17] T. Harada, e-print cond-mat/0310547.

ity condition that determines a random force in a projection o | h
operator formalism[H. Mori, Prog. Theor. Phys.33 423 [18] L. Bertini et al, J. Stat. Phys107, 635(2002.

020102-4



